EIGENVALUES OF SOME COMPOSITE GRAPHS

Zaw Win ${ }^{1}$ and Aung Kyaw ${ }^{2}$

Abstract

K_{n} is a complete graph with n vertices. $K_{n}^{(m)}$ is a graph containing m copies of K_{n} with each vertex of a K_{n} is only adjacent to a vertex of each of the other K_{n}.

We will show that the adjacency matrix of $K_{n}^{(m)}$ has

(i) $\quad(n-1)(m-1)$ eigenvalues of -2
(ii) $m-1$ eigenvalues of $n-2$
(iii) $n-1$ eigenvalues of $m-2$
(iv) an eigenvalue of $n+m-2$.

Composite Graph $K_{n}^{(m)}$ and Its Adjacency Matrix

K_{n} is a complete graph with n vertices. $K_{n}^{(m)}$ is a graph containing m copies of K_{n} with each vertex of a K_{n} is only adjacent to a vertex of each of the other K_{n}. (See figure 1 for $K_{3}^{(4)}$)

Figure 1. $K_{3}^{(4)}$

[^0]Basic definitions and notations on graphs and their eigenvalues can be found in $[1,2,3]$ and others.

The adjacency matrix of $K_{n}^{(m)}$ is like as follow:

$$
\left[\begin{array}{ccccc}
K_{n} & I_{n} & I_{n} & \cdots & I_{n} \\
I_{n} & K_{n} & I_{n} & \cdots & I_{n} \\
I_{n} & I_{n} & K_{n} & \cdots & I_{n} \\
I_{n} & I_{n} & I_{n} & \ddots & I_{n} \\
I_{n} & I_{n} & I_{n} & I_{n} & K_{n}
\end{array}\right]
$$

For example, adjacency matrix of $K_{3}^{(4)}$ is

Since adjacency matrix $\left[\begin{array}{ccccc}0 & 1 & 1 & \cdots & 1 \\ 1 & 0 & 1 & \cdots & 1 \\ 1 & 1 & 0 & \cdots & 1 \\ 1 & 1 & 1 & \ddots & 1 \\ 1 & 1 & 1 & 1 & 0\end{array}\right]$ of K_{n} is like as $\left[\begin{array}{ccccc}K_{1} & I_{1} & I_{1} & \cdots & I_{1} \\ I_{1} & K_{1} & I_{1} & \cdots & I_{1} \\ I_{1} & I_{1} & K_{1} & \cdots & I_{1} \\ I_{1} & I_{1} & I_{1} & \ddots & I_{1} \\ I_{1} & I_{1} & I_{1} & \cdots & K_{1}\end{array}\right]$,
$K_{n}^{(m)}$ can be seen as a generalization of complete graphs.

Eigenvalues and Eigenvectors of Adjacency Matrix of $K_{n}^{(m)}$

The adjacency matrix of $K_{n}^{(m)}$ has
(i) $\quad(n-1)(m-1)$ eigenvalues of -2
(ii) $m-1$ eigenvalues of $n-2$
(iii) $n-1$ eigenvalues of $m-2$
(iv) an eigenvalue of $n+m-2$.

By using each of the eigenvectors shown in figure 2, one can check that there are $(n-1)(m-1)$ eigenvalues of -2 .

Figure 2. $(n-1)(m-1)$ eigenvectors of eigenvalue -2

Figure 3. (a) $m-1$ eigenvectors of eigenvalue $n-2$;
(b) $n-1$ eigenvectors of eigenvalue $m-2$; (c) an eigenvector of eigenvalue

$$
n+m-2
$$

According to eigenvectors shown in figure 3 , there are $m-1$ eigenvalues of $n-2, n-1$ eigenvalues of $m-2$ and an eigenvalue of $n+m-2$.

Acknowledgements

The Second Author was supported by the Asia Research Center under project code ARCYU/002/2014-15/MATHEMATICS.

References

1. R.B. Bapat, Graphs and Matrices, ${ }^{\text {nd }}$ Edition, Springer, 2014
2. S.K. Butler, Eigenvalues and Structures of Graphs, PhD Dissertation, University of California, San Diego, 2008
3. C. Godsil and G.F. Royle, Algebric Graph Theory, Springer, 2001

[^0]: ${ }^{1}$. Professor \& Head (Retd.), Department of Mathematics, University of Yangon
 2. Professor, Department of Mathematics, University of Yangon

