EIGENVALUES OF SOME COMPOSITE GRAPHS

Zaw Win¹ and Aung Kyaw²

Abstract

 K_n is a complete graph with *n* vertices. $K_n^{(m)}$ is a graph containing *m* copies of K_n with each vertex of a K_n is only adjacent to a vertex of each of the other K_n .

We will show that the adjacency matrix of $K_n^{(m)}$ has

- (i) (n-1)(m-1) eigenvalues of -2
- (ii) m-1 eigenvalues of n-2
- (iii) n-1 eigenvalues of m-2
- (iv) an eigenvalue of n + m 2.

Composite Graph $K_n^{(m)}$ and Its Adjacency Matrix

 K_n is a complete graph with *n* vertices. $K_n^{(m)}$ is a graph containing *m* copies of K_n with each vertex of a K_n is only adjacent to a vertex of each of the other K_n . (See figure 1 for $K_3^{(4)}$)

^{1.} Professor & Head (Retd.), Department of Mathematics, University of Yangon

². Professor, Department of Mathematics, University of Yangon

Basic definitions and notations on graphs and their eigenvalues can be found in [1, 2, 3] and others.

The adjacency matrix of $K_n^{(m)}$ is like as follow:

$$\begin{bmatrix} K_n & I_n & I_n & \cdots & I_n \\ I_n & K_n & I_n & \cdots & I_n \\ I_n & I_n & K_n & \cdots & I_n \\ I_n & I_n & I_n & \ddots & I_n \\ I_n & I_n & I_n & I_n & K_n \end{bmatrix}$$

For example, adjacency matrix of $K_3^{(4)}$ is

	0	1	1	1	0	0	1	0	0	1	0	0					
	1	0	1	0	1	0	0	1	0	0	1	0					
	1	1	0	0	0	1	0	0	1	0	0	1					
	1	0	0	0	1	1	1	0	0	1	0	0					
	0	1	0	1	0	1	0	1	0	0	1	0					
	0	0	1	1	1	0	0	0	1	0	0	1					
	1	0	0	1	0	0	0	1	1	1	0	0					
	0	1	0	0	1	0	1	0	1	0	1	0					
	0	0	1	0	0	1	1	1	0	0	0	1					
	1	0	0		0	0	1	0	0	0	1	1					
	0	1	0	0	1	0	0	1		1	0	1					
	0	0	1	0	0	1	0	0	1	1	1	0_					
Since adjacency matrix			$\begin{bmatrix} 0 & 1 & 1 & \cdots & 1 \\ 1 & 0 & 1 & \cdots & 1 \\ 1 & 1 & 0 & \cdots & 1 \\ 1 & 1 & 1 & \ddots & 1 \end{bmatrix}$				of K_n is like as				s	K_1 I_1 I_1 I_1	$I_1 \\ K_1 \\ I_1 \\ I$	$I_1 \\ I_1 \\ K_1 \\ L$	···· ··· ···	$\begin{matrix} I_1 \\ I_1 \\ I_1 \\ I_1 \\ I_1 \\ K_1 \end{matrix}$,
			1 1	1	1	0						I_1	I_1	I_1		$\begin{bmatrix} X_1 \\ K_1 \end{bmatrix}$	

 $K_n^{(m)}$ can be seen as a generalization of complete graphs.

Eigenvalues and Eigenvectors of Adjacency Matrix of $K_n^{(m)}$

The adjacency matrix of $K_n^{(m)}$ has

- (i) (n-1)(m-1) eigenvalues of -2
- (ii) m-1 eigenvalues of n-2
- (iii) n-1 eigenvalues of m-2
- (iv) an eigenvalue of n + m 2.

By using each of the eigenvectors shown in figure 2, one can check that there are (n-1)(m-1) eigenvalues of -2.

$\lceil 1 \rceil$	$\lceil 1 \rceil$	$\lceil 1 \rceil$	$\lceil 1 \rceil$	[1]	$\lceil 1 \rceil$	[1]	[1]	
1	-1	-1	0	0	0	0	0	
0	0	0	-1	-1	-1	0	0	
0	0	0	0	0	0	0	0	
:				:			:	
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	-1	-1	
-1	0	0	-1	0	0	-1	0	0
1	0	0	0	0	0	0	0	
0	0	0	1	0	0	0	0	
0	0	0	0	0	0	0	0	0
				:		:	:	
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	0	0
0	-1	0	0	-1	0	0	-1	0
0	1	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0	0
				:		:	:	
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0
:			:	:		:	:	:
0	0	-1	0	0	-1	0	0	-1
0	0	1	0	0	0	0	0	0
0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0
				:		:		
0	0	0	0	0	0	0	0	0
	$\begin{bmatrix} 0 \end{bmatrix}$	[0],	0	0			0	[1]

Figure 2. (n-1)(m-1) eigenvectors of eigenvalue -2

Figure 3. (a) m - 1 eigenvectors of eigenvalue n - 2;

(b) n-1 eigenvectors of eigenvalue m-2; (c) an eigenvector of eigenvalue n+m-2.

According to eigenvectors shown in figure 3, there are m-1 eigenvalues of n-2, n-1 eigenvalues of m-2 and an eigenvalue of n+m-2.

Acknowledgements

The Second Author was supported by the Asia Research Center under project code ARCYU/002/2014-15/MATHEMATICS.

References

- 1. R.B. Bapat, Graphs and Matrices, 2nd Edition, Springer, 2014
- 2. S.K. Butler, *Eigenvalues and Structures of Graphs*, PhD Dissertation, University of California, San Diego, 2008
- 3. C. Godsil and G.F. Royle, Algebric Graph Theory, Springer, 2001